PATHS
Submit
Language is selected by the extension of the file. See the list of supported languages to know the extension of your language.
Problem
## Challenge
Consider a square matrix of order N(N rows and N columns). At each step you can move one step to the right or one step to the top. How many possibilities are to reach (N,N) from (0,0)?
## Constraints
- Assume input will be a positive integer N satisfying 1 <= N <= 125
- No special characters, only 0-9
- Output should be in a separate line for ever test-case.
## Good luck!
The `shorter` an answer is, the better!
Options
exec is denied
now post-mortem time, all source codes will be revealed
Sample input:_
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
Sample output:
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
Sample input:_
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
32
99
111
98
101
69
23
56
125
115
Sample output:
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
1832624140942590534
22750883079422934966181954039568885395604168260154104734000
360523470416823805932455583900004318515997845619425384417969851840
5716592448890534420436582360196242777068052430850904489000
360401018730232861668242368169788454233176683658575855546640
23623985175715118288974865541854103729000
8233430727600
390590044887157789360330532465784
91208366928185711600087718663295946582847985411225264672245111235434562752
90678241309059123546891915017615620549691253503446529088945065877600
Ranking
Rank | User | Size | Time | Date | Statistics |
---|
1 | hallvabo | 50 | 0.5648 | 2011/03/10 00:01:44 | 0B / 28B / 21B |
2 | leonid | 50 | 0.6018 | 2011/03/10 04:00:13 | 0B / 27B / 22B |
3 | twobit | 53 | 0.6802 | 2011/03/10 05:07:59 | 0B / 32B / 19B |
4 | recursive | 54 | 0.6034 | 2011/03/09 16:08:22 | 0B / 32B / 20B |
5 | ninjalj | 83 | 0.1044 | 2011/03/11 23:14:05 | 0B / 48B / 21B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | teebee | 91 | 0.2764 | 2011/03/12 01:29:48 | 0B / 46B / 44B |
2 | ninjalj | 105 | 0.4616 | 2011/03/12 08:07:48 | 1B / 53B / 50B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | youz | 56 | 0.5480 | 2011/03/10 12:48:55 | 0B / 27B / 26B |
2 | kozima | 54 | 0.1667 | 2011/03/12 23:33:53 | 0B / 23B / 27B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | murky-satyr | 51 | 4.1842 | 2011/03/12 02:50:19 | 0B / 25B / 19B |
2 | youz | 62 | 4.7721 | 2011/03/10 12:49:32 | 0B / 30B / 26B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | twobit | 285 | 2.6388 | 2011/03/11 10:24:31 | 0B / 171B / 89B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | pooq | 105 | 2.7724 | 2011/03/11 13:06:03 | 0B / 53B / 43B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | I., S. | 23 | 0.1431 | 2011/03/09 12:25:14 | 0B / 9B / 14B |
2 | pooq | 23 | 0.1195 | 2011/03/09 15:02:21 | 0B / 7B / 16B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | m.ukai | 147 | 0.9611 | 2011/03/09 11:07:13 | 0B / 101B / 33B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | notogawa | 61 | 0.0178 | 2011/03/10 18:26:13 | 0B / 39B / 20B |
2 | Lost_dog | 61 | 0.0275 | 2011/03/12 05:18:42 | 0B / 39B / 20B |
3 | dico_leque | 61 | 0.0193 | 2011/03/12 07:38:18 | 0B / 37B / 22B |
4 | rst76 | 63 | 0.0308 | 2011/03/10 05:16:52 | 0B / 37B / 25B |
5 | kaki | 64 | 0.0270 | 2011/03/12 07:37:53 | 0B / 37B / 27B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | *yuko* | 306 | 0.4842 | 2011/03/11 21:43:38 | 0B / 201B / 69B |
2 | *yuko* | 304 | 0.1793 | 2014/03/02 11:54:02 | 0B / 199B / 71B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | *yuko* | 196 | 0.0958 | 2011/03/11 01:50:28 | 0B / 114B / 74B |
2 | *yuko* | 180 | 0.0861 | 2012/12/04 22:56:45 | 0B / 99B / 71B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | pooq | 51 | 0.3594 | 2011/03/11 00:30:58 | 0B / 25B / 25B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | tails | 9 | 0.1416 | 2017/07/25 22:35:56 | 2B / 4B / 3B |
2 | whio | 9 | 0.1520 | 2017/07/26 03:20:24 | 2B / 4B / 3B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | murky-satyr | 69 | 5.4723 | 2011/03/12 02:59:59 | 0B / 45B / 21B |
2 | teebee | 76 | 5.4067 | 2011/03/12 01:12:37 | 0B / 47B / 27B |
3 | nn | 78 | 6.0373 | 2011/03/11 00:09:45 | 0B / 50B / 25B |
4 | teebee | 68 | 5.3670 | 2011/04/21 05:13:24 | 0B / 44B / 21B |
Rank | User | Size | Time | Date | Statistics |
---|
1 | murky-satyr | 71 | 7.4556 | 2011/03/12 02:17:56 | 0B / 42B / 28B |
2 | pooq | 90 | 7.5463 | 2011/03/09 16:35:39 | 0B / 51B / 36B |
3 | Lost_dog | 91 | 8.0182 | 2011/03/12 08:36:14 | 0B / 45B / 42B |
Language Ranking_
Rank | Lang | User | Size | Score |
1 | gs2 | tails | 9 | 10000 |
2 | Burlesque | Hendrik | 15 | 6000 |
3 | J | I., S. | 23 | 3913 |
4 | GolfScript | ninjalj | 29 | 3103 |
5 | PARI/GP | teebee | 33 | 2727 |
6 | dc | tails (ninjalj) | 35 | 2571 |
7 | Perl | tybalt89 | 37 | 2432 |
8 | Ruby | leonid | 41 | 2195 |
9 | Python | hallvabo | 50 | 1800 |
10 | Maxima | pooq | 51 | 1764 |
11 | Arc | murky-satyr | 51 | 1764 |
12 | Common LISP | kozima | 54 | 1666 |
13 | Perl6 | Hydrazer | 60 | 1500 |
14 | Haskell | notogawa | 61 | 1475 |
15 | Scheme | kaki(dico_leque) | 65 | 1384 |
16 | Groovy | teebee | 68 | 1323 |
17 | Scala | murky-satyr | 71 | 1267 |
18 | Zsh | ninjalj | 81 | 1111 |
19 | PHP | teebee | 91 | 989 |
20 | Bash | ninjalj | 95 | 947 |
21 | Prolog | pooq | 105 | 857 |
22 | OCaml | m.ukai | 147 | 612 |
23 | Fortran | *yuko* | 180 | 500 |
24 | Lua | twobit | 285 | 315 |
25 | Pascal | *yuko* | 304 | 296 |
return to the top page